1. Dettweiler M, Lyles JT, Nelson K, et al. American Civil Warplant medicines inhibit growth, biofilm formation, and quorumsensing by multidrug-resistant bacteria. Sci Rep. 2019;9(1):7692.
2. Ekor M. The growing use of herbal medicines: issues relatingto adverse reactions and challenges in monitoring safety. FrontPharmacol. 2014;4:177.
3. Newman DJ, Cragg GM. Natural products as sources of newdrugs from 1981 to 2014. J Nat Prod. 2016;79(3):629-61.
4. Randle J, Arthur A, Vaughan N, Wharrad H, Windle R. Anobservational study of hand hygiene adherence followingthe introduction of an education intervention. J Infect Prev.2014;15(4):142-7.
5. Kacmaz B, Gul S. A comparison of the recoverable proportion ofmethicillin-resistant Staphylococcus aureus from two differenttypes of papers. GMS Hyg Infect Control. 2016;11:Doc06.
6. Tolmacheva AA, Rogozhin EA, Deryabin DG. Antibacterial andquorum sensing regulatory activities of some traditional Eastern-European medicinal plants. Acta Pharm. 2014;64(2):173-86.
7. Sharifi-Rad J, Mnayer D, Tabanelli G, et al. Plants of the genusAllium as antibacterial agents: from tradition to pharmacy. CellMol Biol (Noisy-le-grand). 2016;62(9):57-68.
8. Jakobsen TH, van Gennip M, Phipps RK, et al. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorumsensing. Antimicrob Agents Chemother. 2012;56(5):2314-25.
9. Gibson H, Elton R, Peters W, Holah JT. Surface and suspensiontesting: conflict or complementary. Int BiodeteriorationBiodegradation. 1995;36(3-4):375-84.
10. Becker RE, Bubeck Wardenburg J. Staphylococcus aureus andthe skin: a longstanding and complex interaction. Skinmed.2015;13(2):111-20.
11. Park JM, Kwon M, Hong KH, Lee H, Yong D. EuropeanCommittee on antimicrobial susceptibility testing-recommendedrapid antimicrobial susceptibility testing of Escherichia coli,Klebsiella pneumoniae, and Staphylococcus aureus from positiveblood culture bottles. Ann Lab Med. 2023;43(5):443-50.
12. Schuster A, Ortmayr N, Oostingh GJ, Stelzhammer B.Compounds extracted from larch, birch bark, douglas fir, andalder woods with four different solvents: effects on five skin-related microbes. Bioresources. 2020;15(2):3368-81.
13. Wagner K, Roth C, Willför SM, et al. Identification ofantimicrobial compounds in different hydrophilic larch barkextracts. Bioresources. 2019;14(3):5807-15.
14. Tanase C, Cosarca S, Toma F, et al. Antibacterial activities ofbeech bark (Fagus sylvatica L.) polyphenolic extract. Environ EngManag J. 2018;17(4):877-84.
15. Vainio-Kaila T, Zhang X, Hänninen T, et al. Antibacterial effects ofwood structural components and extractives from Pinus sylvestrisand Picea abies on methicillin-resistant Staphylococcus aureusand Escherichia coli O157:H7. BioResources. 2017;12(4):7601-14.
16. Li X, He C, Song L, et al. Antimicrobial activity and mechanismof Larch bark procyanidins against Staphylococcus aureus. ActaBiochim Biophys Sin (Shanghai). 2017;49(12):1058-66.
17. Blondeau D, St-Pierre A, Bourdeau N, Bley J, LajeunesseA, Desgagné-Penix I. Antimicrobial activity and chemicalcomposition of white birch (Betula papyrifera Marshall) barkextracts. Microbiologyopen. 2020;9(1):e00944.
18. Méndez-Vilas A. Microbial pathogens and strategies forcombating them: science technology and education, FormatexResearch Center, Badajoz, Spain; 2013. pp. 883-888.
19. Schons AB, Appelt P, Correa JS, Cunha MAA, Rodrigues MG,Anaissi FJ. Green synthesis of Na abietate obtained from thesalification of Pinus elliottii resin with promising antimicrobialaction. Antibiotics (Basel). 2023;12(3):514.
20. Kim MG, Lee HS. Growth-inhibiting activities of phenethylisothiocyanate and its derivatives against intestinal bacteria. JFood Sci. 2009;74(8):M467-M471.
21. Pujol CA, Damonte EB, Turjan J, Yanbo KZ, Capek P. Theantiviral potency of Fagus sylvatica 4OMe-glucuronoxylansulfates. Int J Biol Macromol. 2016;87:195-200.
22. Zurek N, Pycia K, Pawlowska A, Potocki L, Kapusta IT. Chemicalprofiling, bioactive properties, and anticancer and antimicrobialpotential of Juglans regia L. leaves. Molecules. 2023;28(4): 1989.